
Data base Abstractions: Aggregation 
and Generalization 

JOHN MILES SMITH and DIANE C.P. SMITH 

University of Utah 

Two kinds of abstraction that are fundamentally important in database design and usage are 
defined. Aggregation is an abstraction which turns a relationship between objects into an ag- 
gregate object. Generalization is an abstraction which turns a class of objects into a generic 
object,. It is suggested that all objects (individual, aggregate, generic) should be given uni- 
form treatment in models of the real world. A new data type, called generic, is developed as a 
primitive for defining such models. Models defined with this primitive are structured as a set 
of aggregation hierarchies intersecting with a set of generalization hierarchies. Abstract 
objects occur at the points of intersection. This high level structure provides a discipline for 
the organization of relational databases. In particular this discipline allows: (i) an important 
class of views to be integrated and maintained; (ii) stability of data and programs under cer- 
tain evolutionary changes; (iii) easier understanding of complex models and more natural 
query formulation; (iv) a more systematic approach to database design; (v) more optimization 
to be performed at lower implementation levels. The generic type is formalized by a set of 
invariant properties. These properties should be satisfied by all relations in a database if 
abstractions are to be preserved. A triggering mechanism for automatically maintaining 
these invariants during update operations is proposed. A simple mapping of aggregation/ 
generalization hierarchies onto owner-coupled set structures is given. 

Key Words and Phrases: data model, relational database, database design, aggregation, 
generalization, data abstraction, data type, integrity constraints, knowledge representation 
CR Categories: 3.65,3.69,3.‘79, 4.29, 4.33, 4.34 

1. INTRODUCTION 

An abstraction of some system is a model of that system in which certain details 
are deliberately omitted. The choice of the details to omit is made by considering ‘. 
both the intended applzcatim of the abstraction and also its users. The objective is 
to allow users to heed details of the system which are relevant to the application 
and to ignore other details. 

In some applications a system may have too many relevant details for a single 
abstraction to be intellectually manageable. Such manageability can be provided 
by decomposing the model into a hierarchy of abstractions. A hierarchy allows 
relevant details to be introduced in a controlled manner. The abstractions on any 

Copyright @ 1977, Association for Computing Machinery, Inc. General permission to repub- 
lish, but not for profit, all or part of this material is granted provided that ACM’s copyright 
notice is given and that reference is made to the publication, to its date of issue, and to the 
fact that reprinting privileges were granted by permission of the Association for Computing 
Machinery. 
This work was partially supported by the National Science Foundation under Grant MCS75- 
09903. 
Authors’ address: Computer Science Department, University of Utah, Salt Lake City, UT 
84112. 

ACM Transactions on Dstabsse Systems, Vol. 2, No. 2, June 1977, Pagea 103433. 



106 J.M. Smith and D.C.P. Smith 

given level of the hierarchy allow many relevant details to be (temporarily) ig- 
nored in understanding the abstractions on the next higher level. 

One advantage of such an “abstraction hierarchy” is the capability for different 
users to access the model at different levels of abstraction. For example, if the 
underlying system is a commercial enterprise, executive users may access global 
information while clerical users may access detailed information. In this way a 
single model can be shared among several diverse users without compromising 
their access requirements. Another advantage of an abstraction hierarchy is an 
enhanced stability of the model as the application, or the system itself, evolves. A 
change in a detail which is ignored at higher levels of the model will leave these 
higher levels unaffected. Some changes of course will permeate from a low level 
to a high level. 

A relation in Codd’s relational schema supports two distinct forms of abstraction. 
We call these forms of abstraction “aggregation” and “generalization.” Aggrega- 
tion refers to an abstraction in which a relationship between objects is regarded as 
a higher level object. In making such an abstraction, many details of the relation- 
ship may be ignored. For example, a certain relationship between a person, a hotel, 
and a date can be abstracted as the object “reservation.” It is possible to think 
about a “reservation” without bringing to mind all details of the underlying re- 
lationship-for example, the number of the room reserved, the name of the re- 
serving agent, or the length of the reservation. 

Generalization refers to an abstraction in which a set of similar objects is regarded 
as a generic object. In making such an abstraction, many individual differences 
between objects may be ignored. For example, a set of employed persons can be 
abstracted as the generic object “employee.” This abstraction disregards indi- 
vidual differences between employees-for example, the facts that employees have 
different names, ages, and job functions. 

When an appropriate structuring discipline is imposed, Codd’s relational schema 
can simultaneously support both hierarchies of aggregation abstractions and 
hierarchies of generalization abstractions. In a previous paper [4] we proposed a 
structuring discipline suitable for aggregation abstractions, The present paper 
develops a structuring discipline for generalization abstractions and integrates it 
with the one previously proposed for aggregation abstractions. 

The benefits of such a structuring discipline are: 
(i) abstractions (sometimes called views) pertinent to Merent database users 

can be effectively integrated and consistently maintained; 
(ii) stability (sometimes called data independence) of models can be provided 

under several kinds of evolutionary change; 
(iii) highly structured models can be supported without a significant loss in 

intellectual manageability; 
(iv) a more systematic approach to database design, particularly of database 

procedures, can be developed; 
(v) more efficient implementations are possible since more assumptions ‘can 

be made about high level structure. 
In [4] we contrasted the primitives for express&g aggregation abstractions that 

are found in programming languages with those tbt are needed in databases. We 
ACM Transactions on Database Systems, Vol. 2, No. 2, June 1977. 



Database Abstractions: Aggregation and Generalization l 107 

showed how to adapt Hoare’s Cartesian product structure’ [2] so that it may be 
used to define relational models. This adaptation leads to several insights about 
the role of aggregation abstractions in databases. The present work can be regarded 
as an adaptation of Hoare’s discriminated union structure2 [2] to relational models. 
This adaptation leads to insights about the role of generalization abstractions in 
databases. 

Database research has been almost exclusively concerned with aggregation (for 
example, Codd’s normal forms [l]) while generalization hm been largely ignored. 
The reason for this is probably that in simple models generalization can, usually 
be handled, fairly satisfactorily, on an ad hoc basis. Interestingly, artificial in- 
telligence (AI) research on knowledge bases has been principally concerned with 
generalization (for example, Quillian’s semantic networks [3]) while aggregation 
has not been fully exploited. By combining aggregation and generalization into one 
structuring discipline, we are cross-fertilizing both the database and AI areas. 

Section 2 develops a philosophy for representing generalization abstractions in 
Codd’s relational schema. This philosophy leads to a powerful generic structure 
for defining relational models. This structure is described in Section 3. Section 4 
examines how the generic structure may be used to handle various modeling situ- 
ations. Section 5 considers five properties of a relational model which must remain 
invariant during update operations. These invariant properties form a (partial) 
axiomatic definition of the generic structure. A set of rules for maintaining these 
invariants is developed by using semantic considerations. Section 6 offers conclud- 
ing remarks on several aspects of the generic structure, including database design 
methods, implementation techniques, and access languages. 

2. GENERALIZATION ABSTRACTIONS 

The object of this section is to develop a philosophical position on the nature and 
representation of generalizations. First we motivate why it is important to represent 
generalizations in models of (aspects of) the real world. Then we consider hier- 
archies of generalizations and discuss some of their properties. Finally, we investi- 
gate the representation of generalizations as Codd relations. 

We wilt use the term “generalization” in the folIowing way: A generalization is 
an abstraction which enables a class of individual objects to be thought of generically 
as a single named object. Generalization is perhaps the most important mechanism 
we have for conceptualizing the real world. It is apparently the basis for natural 
language acquisition-the child moves from the observation of specific dogs to a 
model of dogs in general. It allows us to make predictions about, the future on the 
basis of specific events in the past-if this fire and that fire have burned my hand, 
then perhaps fires in general will burn my hand. 

In designing a database to model the real world, it, is essential that the database 
schema have the capability for explicitly representing generalizations. This will 
allow naming conventions in the model to correspond with natural language and 
enable users to employ established thought patterns in their interactions with the 

1 Similar to PASCAL'S record structure. 
2 Similar to PASCAL'S record variant structure. 

ACM Tramactions on Database Systems, Vol. 2. No. 2. June 1977. 



108 l J.M. Smith and D.C.P. Smith 

Table I. Generic objects participating in a relationship 

affiliation: 

profession F society 

computer 
scientist 

ACM 

computer 
scientist 

doctor 

trucker 

electrical 
engineer 

IEEE 

AMA 

Teamsters 

IEEE 

database. In particular the explicit naming of generic objects allows the following 
capabilities: (i) the application of operators to generic objects; (ii) the specification 
of attributes of generic objects; and (iii) the specification of relationships in which 
generic objects participate. Essentially we want to allow generic objects to be 
treated uniformly with, and to have the same capabilities as, all other kinds of 
objects. The first capability above is clear enough; however, it may be worth giving 
some examples of the second and third capabilities. 

Suppose we have generalized a class of individual objects into a named generic 
object. Information which “summarizes” attributes of the individuals can be at- 
tached as attributes of the generic object. For example, since all dogs have “sharp 
teeth” and “four legs,” this information can be attached as an attribute of the 
generic object ‘Ldog.” This information could be attached redundantly as attributes 
of individual dogs. However, this disguises the fact that dogs in general have these 
attributes rather than just the individuals mentioned. 

As another example, we might generalize a class of truck drivers into the generic 
object “trucker.” We may not be interested in the pay rate of each individual 
truck driver, but only in the average (maximum, minimum) pay rate of truck 
drivers in general. This pay rate information belongs as an attribute of the generic 
object “trucker.” 

A generic object, like an individual object, can participate in a relationship with 
other objects. For example, we can take the relationship between “professions” 
and their affiliated %ocieties.” Particular professions include “trucker,” “computer 
scientist,” and “doctor”-all of which are generic objects. This relationship, called 
“affiliation,” is represented in Table I. Notice that ‘Lprofession” is a generalization 
of the class which includes “trucker,” “computer scientist,” and “doctor.” 

We now examine the properties of a hierarchy of generic objects. To fix the dis- 

cussion, we make this examination via a specific example. We assume that a model 
must be constructed for the set of vehicles owned by some large organization such 
as a government agency or an industry. These vehicles include many diverse types 
such as trucks, submarines, bicycles, and helicopters. 

Figure 1 illustrates one partioular decomposition of “vehicle” into lower level 
generic objects. Note that individual vehicles are not explicitly represented. Each 
generic object should be thought of as defining a class of individual vehicles. The 
ACM Transactions on Database Systems, Vol. 2, No. 2, June 1977. 



Database Abstractions: Aggregation and Generalization 

vehicle 

l 109 

vvri”e, 
plane helicopter vehicle vehicle V.ESSC?l Vessel craft 

A 

b 

passenger air 
aircraft freighter A truck bike car ' lid5 ' ' submarine kayak sailboat 

d b d6b d b 0 b 

Fig. 1. A generic hierarchy over vehicles 

figure indicates, for example, that “truck,” “bike,” and “car” can be generalized 
to the notion “road vehicle”; that “road vehicle” and “rail vehicle” can be gen- 
eralized to the notion “land vehicle”; and that “land vehicle,” “air vehicle,” and 
“water vehicle” can be generalized to the notion ‘%ehicle.,’ 

Let G be an object in a generic hierarchy. To represent G as a Codd relation, 
we must select a set of attributes which are common to all individuals in the class 
of G. For example, in representing “vehicle” we may include the attributes “identi- 
fication number,” “manufacturer,” “price,,, and “weight.,, These attributes are 
common to all vehicles. In representing ‘?oad vehicle” we may include the previous 
attributes and others such as “number of wheels” and “tire pressure.” These at- 
tributes are common to all road vehicles; however, the latter two attributes are 
not common to all vehicles. In representing “truck” we may include all the previous 
attributes and others such as “engine horsepower” and “cab size.” These attributes 
are common to all trucks; however, the latter two attributes are not common to all 
road vehicles. 

Now an individual truck will be a member of each of the classes ‘%ehicle,” “road 
vehicle,” and “truck.” However, the relevant attributes of this truck will vary 
from class to class. When this truck is considered as an individual vehicle, any 
attributes which distinguish trucks from other vehicles will be irrelevant. When 
this truck is considered as an individual road vehicle, any attributes which distin- 
guish trucks from other road vehicles will be irrelevant. In general an individual 
object will have more relevant attributes the lower the generic level of the class 
in which it appears. We call the attributes of an individual object that are rele- 
vant to a class G the G-attributes of that object. 

The generic hierarchy shown in Figure 1 has two characteristics that do not 
belong to all generic hierarchies. The first characteristic is that it is a tree (i.e. no 
generic object is the immediate descendant of two or more generic objects). The 
second characteristic is that the immediate descendants of any node have classes 
which are mutually exclusive. Generic hierarchies which do not have these char- 
acteristics are shown in Figures 2 and 3, respectively. Our method for representing 
generic hierarchies as Codd relations can accommodate these general forms of 
generic hierarchy. 

Figure 2 indicates that “helicopter” can be generalized in two ways--either to 
‘Lmotorized vehicle” or to “air vehicle.” Figure 3 illustrates a decomposition of 

ACX Transactions on Database Systems,Vol. Z,No.Z,June 1977. 



110 l J.M. Smith and D.C.P. Smith 

motorized vehicle air vehicle 

Fig. 2. A generic hierarchy which is not a tree 

vehicle 

wind 

Fig. 3. A generic hierarchy in which the immediate descendants of a node do not form 
mutually exclusive classes 

“vehicle” into two distinct kinds of generic object. One kind of generic object is 
concerned with the method of vehicle propulsion (wind, human, motor). The other 
kind of generic object is concerned with the principal medium through/on which 
the vehicle moves (air, water, land). Some of these descendant objects do not have 
disjoint classes. For example, some vehicles are both motorized and move through 
the air. The classes for “motorized vehicle” and “air vehicle” therefore have some 
common members. 

Our method for representing a generic heirarchy requires that the immediate 
descendants of any node be partitioned into groups. Each group must contain 
generic objects whose classes are mutually exclusive. In practice this grouping can 
usually be made quite easily from semantic considerations. For example, the de- 
scendants in Figure 3 would be grouped as: {wind propelled vehicle, motorized 
vehicle, man powered vehicle) and {air vehicle, water vehicle, land vehicle). The 
first group contains mutually exclusive classes which correspond to alternative 
types of “propulsion system.” The second group contains mutually exclusive 
classes which correspond to different types of “transit medium.“3 

We call a mutually exclusive group of generic objects sharing a common parent 
a cluster. We say that a cluster belongs to its parent generic object. For example, 
we may talk about the two clusters belonging to “vehicle” in Figure 3. A leaf 
node in a generic hierarchy has no cluster belonging to it. In Figure 1 every non- 
leaf generic object has exactly one cluster belonging to it. In Figure 2 the cluster 
belonging to “motorized vehicle” and the cluster belonging to “air vehicle” have 
a common element-helicopter.. 

We shall find it necessary to give each cluster a (meaningful) name. This name 
- 
a If amphibious vehicles were of interest, the generic object “amphibious vehicle” would be 
included as an alternative to “air vehicle,” “water vehicle,” and “land vehicle.” 

ACM Transactions on Database Systems, Vol. 2, No. 2, June 1977. 



Database Abstractions: Aggregation and Generalization l 111 

should be chosen so that it is descriptive of the generic objects in the cluster. For 
example, the name of the cluster {wind propelled vehicle, motorized vehicle, man 
powered vehicle) may be “propulsion category.” The name of the cluster {air 
vehicle, water vehicle, land vehicle) may be “medium category.” 

We will now describe a method for representing a generic hierarchy as a hierarchy 
of Codd relations. We create one relation for each generic object in the hierarchy. 
Assume G is a generic object such that (i) I is the class of individual objects as- 
sociated with G, (ii) Al, , . . , A,, are the G-attributes, and (iii) Cl, . . . , C, are 
the names of clusters belonging to G. G is represented by the Codd relation : 

G: 

where (i) there is one and only one tuple for each individual in I; (ii) if an individual 
has a value vi for attribute Ai, then its tuple contains vi in domain Ai; (iii) if an 
individual is also included in generic object v,+~ in cluster Ci, then its tuple contains 
v,,+j in domain C;; and (iv) if an individual is not also included in any generic ob- 
ject in cluster Ci, then its tuple contains a blank (-) in domain Cj. 

Table II illustrates how Codd relations may appear (at some point in time) for 
the generic objects “vehicle, ” “motorized vehicle,” and “air vehicle” in Figure 4. 
Notice that one consequence of the representation method is the appearance of 
relation names as values in domains. For example, the domains “medium category” 
and “propulsion category” in the relation “vehicle” have relation names as values. 
This allows us to employ Codd’s relational operators in the manipulation of generic 
objects. As we shall see in Section 4, it also allows us to use a uniform method for 
representing relationships in which objects, either generic or individual, participate. 

We call the domain in a relation which contains the name of a descendant rela- 
tion the image domain for that descendant. For example, the domain “medium 
category” in the relation “vehicle” is the image domain for the descendant rela- 
tions “land vehicle,” “air vehicle,” and “water vehicle.” There is a one-to-one 
correspondence between clusters in a generic hierarchy and image domains in its 
relational representation. 

Notice that in Table II, with the exception of the image domains, all domains 
in “vehicle” are inherited by its descendant relations “motorized vehicle” and 
“air vehicle.” Although this domain inheritance may often be appropriate in rela- 
tional models, we do not insist that it must occur. This allows generalization ab- 
stractions to be represented in the manner most appropriate to their users, 

It is clear that a great deal of information occurs redundantly in a relation 
hierarchy. This is perfectly acceptable provided there is some way to implement 
a relation hierarchy such that (i) storage space is not wasted owing to data dupli- 
cation, and (ii) consistency of redundant information can be maintained. This 
issue is further discussed in Section 6. 

ACM Transactions on Database Systems, Vol. 2. No. 2, June IQ??. 



-12 ’ J.M. Smith and D.C.P. Smith 

Table II. Examples of Codd relations for three generic objects from the hierarchy of 
Figure 4 

vehicle: 

propulsion 
category 

iden. 
mm. 

medium 
manufacturer price weight category 

Mazda 65.4 10.5 land veh. 

Schwin 3.5 0.1 land veh. 

Boeing 7,900 840 air veh. 

Aqua Co 12.2 1.9 water veh. 

Gyro Inc 650 150 air veh. 

Vl 

v2 

v3 

v4 

v5 

motorized veh. 

man powered veh. 

motorized veh. 

wind propelled veh. 

motorized veh. 

motorized vehicle: 

manufacturer price weight 
horse- 
power 

motor 
category I 

fuel 
capacity 

Mazda 65.4 10.5 150 300 

Boeing 7,900 840 9600 2600 

Gyro Inc 650 150 1500 2000 

rotary veh. Vl 

v3 

v5 

air vehicle: 

iden. 
nun. 

t- 

v3 

v5 

maximum takeoff lift 
manufacturer price weight altitude distance category 

Boeing 7,900 840 30 1000 plane 

Gyro Inc 650 150 5.6 0 helicopter 

vehicle 

A wind 
propelled,mot&ised' 

vehicle 

0' 
vehicle 

powered 
vehicle 

d 4 jet 

'land 
vehic 

b 

\‘ le air \ vehicle 
water 

.vc=hi plo 

rotary / 
vehicle vehicle 

d 6 

'rocket 
vehicle 

b 
Fig. 4. A generic hierarchy over vehicles 

3. THE GENERIC STRUCTURE 

We now describe a structuring primitive for specifying generalizations in relational 
models. In [4] we introduced the types collection and aggregate and declared a 
relation R by writing: 

ACM Transactions on Database Systema, Vol. 2. No. 2, June 1977. 



Database Abstractions: Aggregation and Generalization l 113 

var R: collection of aggregate [keylist] 
81: (key) RI; 

E*: (key) R, 
end 

In this declaration “keylist” contains the selectors for the key domains of R. The 
curly brackets around “key” indicate that it does not always have to occur. Now 
R can actually be thought of as the name of a generic object. To define the position 
of the generic object R in a generic hierarchy, we only need to specify its descendants 
in this hierarchy. This suggests that the structure shown in Figure 5 is appropriate 
for defining Codd relations. 

We use the term generic rather than the looser term collection to indicate 
that a generic object is being defined. The generic structure simultaneously 
specifies two abstractions: (i) It specifies R as an aggregation of a relationship 
between objects R1 through R,, and (ii) it specifies R as a generalization of a class 
containing objects R1l through Rm,,. The domains with selectors ski through skm 
are image domains. If no image domains are specified, then the generic structure 
is the same as the collection structure of [4]. 

Before discussing the five syntactic requirements of the generic structure, we 
define the three relations of Table II. These definitions are shown in Figure 6. 
Note in the definition of “vehicle” that its generic descendants are listed following 
“generic” and its aggregate descendants are listed following “aggregate.” 
The generic descendants are grouped into clusters, and each cluster is associated 
with the selector of its corresponding image domain. In this case the image domains 
have selectors MC and PC. 

We shall not discuss the first two syntactic requirements in Figure 5-these are 
explained in [4]. Requirement (iii) demands that each generic descendant of R be 
declared elsewhere as a generic object in its own right. In Figure 6 this is illustrated 
by the declarations of “motorized vehicle” and “air vehicle.” Furthermore, these 

var R: generic 
SEI = (Ru, . . . , Rlpl); 

. . . 
am = (Rnl, . . . , Rnpm) 

of 
aggregate (keylist] 

al: (key) RI; 

4: (key) R, 
end 

where : 
(i) Ri (1 5 i 5 n) is either a generic identifier (in which case “key” must appear) or a 

type identifier (in which case “key” must not appear) ; 
(ii) “keylist” is a sequence of si’s (15 i 5 n) separated by commas; 

(iii) each Rdi (i = 1, 1 2 j 5 pl; . . . ; i = m, 1 _< j 5 p,) is a generic identifier whose key 
domains are the same as those of R; 

(iv) each ski (1 5 i 5 m) is the same as some Sj (1 I j I n); 
(v) if ski is the same as sj, then the type “(key} Rj” is the range (Ril, . . . , Rip;). 

Fig. 5. The generic structure 

ACM Transactions on Database Systems, Vol. 2. No. 2, June 1977. 



114 l J.M. Smith and D.C.P. Smith 

var vehicle : 
generic 

MC = (land vehicle, air vehicle, water vehicle); 
PC = (motorized vehicle, man powered vehicle, wind propelled vehicle) 

of 
aggregate [ID#] 

ID#: identification number; 
M: manufacturer; 
P: price; 
W: weight; 

MC: medium category; 
PC: propulsion category 

end 

var mot,orized vehicle: 
generic 

MTC = (rotary vehicle, jet vehicle, rocket vehicle) 
of 
aggregate [IDf] 

ID#: identification number; 
M: manufacturer; 
P: price; 
W: weight; 

HP: horsepower; 
FC: fuel capacity; 

MTC: motor category 
end 

var air vehicle: 
generic 

LC = (plane, helicopter) 
of 
aggregate [ID#] 

ID#: identification number; 
M: manufacturer; 
P: price; 
W: weight; 

MA: maximum altitude; 
TD: takeoff distance; 
LC: lift category 

end 

Fig. 6. Definitions for the relations in Table II 

descendant objects must all have the same key domains as R. This requirement allows 
us to reference individual objects in a uniform way regardless of the generic class 
in which they appear. An occasionally useful exception to this rule is that if ski is 
in the key of R, then it does not have to appear in the key of any Rij (1 5 j < pi). 
If it did appear, the domain would have the same value for each individual in 
R+ For example, suppose PC was declared as belonging to the key of “vehicle” 
in Figure 6. If we then added.“propulsion category” as a new domain in the rela- 
tion “motorized vehicle” in order to satisfy requirement (iii), this domain would 
have the same value (“motorized vehicle”) in every individual. 

Requirement (iv) ensures that each specified cluster is associated with a particular 
(image) domain. Requirement (v) ensures that each image domain can actually 

ACM Transactions on Database Systems, Vol. 2, No. 2, June 1977. 



Database Abstractions: Aggregation and Generalization 115 

assume as values the generic identifiers listed in its associated cluster. For example, 
in the definition of “vehicle” in Figure 6, the type “medium category” must be 
defined (elsewhere) as ranging over the identifiers “land vehicle,” “air vehicle,” 
and “water vehicle.” 

If the definition of a relation satisfies the five syntactic requirements, this is no 
guarantee that the definition specifies a meaningful aggregation abstraction and a 
meaningful generalization abstraction. We now consider what additional require- 
ments are necessary for meaningful abstractions to be specified. These reqmre- 
ments must be semantic and somehow related to our intuitive understanding of 
the real world. 

Since databases are usually designed to model the real world as we understand 
it, we can safely require that all object names in a relation definition be natural 
language nouns. These nouns then provide the bridge between our intuitive under- 
standing of the real world and its intended reflection in the relation definition. If 
natural language nouns are not used, any discussion of the meaningfulness of a 
relation definition seems moot. 

Assuming that R, each Ri, and each Rij (in Figure 5) are all natural language 
norms, five semantic conditions are necessary for a relation definition to specify 
an aggregation and a generalization: 

(i) Each R-individual must determine a unique Ri-individual. 
(ii) No two R-individuals determine the same set of Ri-individuals for all Ri 

whose selectors are in “keylist.” 
(iii) Each Rij-individual must also be an R-individual. 
(iv) Each R-individual classified as Ri, must also an Rij-individual. 
(v) No Rd,-individual is also an Rik-individual for j # k. 

By an R (Ri or Rij)-individual, we mean an instance of the generic object R (Ri 
or R;i) as it occurs in the real world. 

The first two conditions are necessary for an aggregation abstraction and are 
discussed in [l]. The remaining three conditions are necessary for a generalization 
abstraction. Condition (iii) ensures that Rij is a subclass of R and thus that Rij 
can be generalized to R. For example, in Table II, the motorized vehicles Vl, V3, 
and V5 are also vehicles. Condition (iv) ensures that Rij contains all R-individuals 
classified as belonging to R<j. For example, in Table II, “motorized vehicle” con- 
tains all vehicles so classified in “vehicle.” Condition (v) ensures that clusters 
contain mutually exclusive classes. 

We say that a relation is well-defined if its definition satisfies the five semantic 
requirements above. 

4. MODELING WITH THE GENERIC STRUCTURE 

The objective of this section is to show how aggregation and generalization ab- 
stractions are used in designing real world models. When aggregation and generali- 
zation are employed separately, they can only model relatively simple situations. 
However, by employing them together, we will see that a rich variety of models 
can be defined. We first describe a graphical representation for relation defini- 
tions. This notation makes models much easier to visualize. 

ACM Transactions on Database Systema. Vol. 2, No. 2. June 1977. 



116 . J.M. Smith and D.C.P. Smith 

The notation is based on the observation that aggregation and generalization are 
independent activities. Given a particular object, generalizations of this object 
can be considered independently of relationships in which the object participates. 
This suggests a graphical notation in which generalization and aggregation are 
represented orthogonally. We have chosen to represent aggregation in the plane of 
the page, and generalization in the plane perpendicular to the page. The generic 
structure of Figure 5 is denoted graphically in Figure 7. 

High level aggregate objects will appear toward the top of the page and low 
level aggregate objects toward the bottom. Aggregation therefore occurs up the 
page. High level generic objects will appear (in a simulated three-dimensional 
space) in the surface of the page and low level generic objects will appear below 
the surface. Generalization therefore occurs out of the page. 

Suppose that we must model the “employees” of a certain company. Let’s as- 
sume that this company has three different types of employees at some point in 
time-truckers, secretaries, and engineers. Information must be maintained about 
each individual employee-though different kinds of information are required de- 
pending on the type of employee. In addition information must be maintained 
about each generic type of employee. 

Specifically, assume that the attributes “employee ID#,” “name,” “age,” and 
“employee type” are important for all individual employees. The necessary ad- 
ditional attributes for each employee type are given in the following table. 

employee type additional attributes 

trucker vehicle ID#, number of license endorsements 
secretary typing speed 
engineer highest degree, type (mech, elec, etc.) 

For each generic type of employee the following attributes must be recorded: 
number of employees (size), number of vacant positions (vacancies), hiring agency 
(agency). 

We will now construct a relational model which meets the preceding require- 

aggregation 

R: 

5p1: R 
mp,: 

I 1 1 1 

generalization 

4' WF 

doizns 7 /I ..- F , 

Fig. 7. A graphical notation for the generic structure 

ACM Transactions on Dstabase Systems, Vol. 2, No. 2, June 1977. 



ments. 

Database Abstractions: Aggregation and Generolizotion l 117 

employee : 

I 1 
Fig. 8. Initial model for “employee” 

engineer: 

employee : 

I I 

Fig. 9. Decomposition of “employee” in the generalization plane 

Since the most abstract object that must be represented is “employee,” 
the initial model contains precisely this object. This is shown in Figure 8. The 
‘next step is to decompose this object in both the aggregation and generalization 
planes. We have decided to decompose first along the generalization plane. In this 
plane the components of “employee” are the generic objects ‘%rucker,” “secre- 
tary,” and “engineer.” These three objects form a single cluster. The model then 
appears as in Figure 9. 

We now decompose “employee” in the aggregation plane. There are four at- 
tributes of an employee that must be recorded: employee ID#, name, age, and 
employee type. We therefore include four objects as the components of “employee.” 
These objects are included in Figure 10. With the exception of “employee-type,” 
the components of “employee” are primitive objects-that is, they are only thought 
of as a whole. The object “employee-type,” however, has several components 
which are important. These correspond to the attributes: typename, size, vacancies, 
and agency. All these components are primitive. The model now appears as in 
Figure 10. 

We can now continue to develop the model by decomposing any object (which 
is not already decomposed) along either plane. Since we are not interested in any 
subtypes of “employee-type,” this object is not decomposed along the generaliza- 
tion plane. For similar reasons, we do not decompose “trucker,” “secretary,” or 
“engineer” along the generalization plane. However, these three objects must each 
be decomposed into (primitive) objects in the aggregation plane. These decomposi- 
tions are included in Figure 11. To avoid cluttering the figure, we have left in- 
complete the lines which should connect each of the objects “emp. ID#,” “name,” 
and “age” with each of the objects “trucker,” “secretary,” and (‘engineer.” Fi- 
nally, we can choose selectors and keys for each object. The relational model then 
appears as in Figure 11. 

Definitions for the relations “employee” and “employee-type” are given in 
Figure 12. Notice that the relation “employee-type” describes details about 
“trucker,” “secretary,” and “engineer” when they are thought of as generic ob- 
jects. The relation “employee” refers to these details through the image domain 
(i.e. the domain with selector “TN”), This allows each individual employee to 

ACM Transactions on Database Systems. Vol. 2, No. 2, June 1977. 



118 . J.M. Smith and D.C.P. Smith 

engineer: 

employee : 

,i- 

1 I 

employee- 
type : 

diik-b 

Fig. 10. Decomposition of “employee” in the aggregetion plane 

refer to all the generic properties of the employee subclass to which it belongs. 
In general a relation R may have several clusters in the generalization plane 

which belong to it. For each cluster C there will be a corresponding relation refer- 
enced from R in the aggregation plane. This relation will describe the attributes 
(if any) of the generic objects in C. We can summarize this general property of 
relational models as: The generic components of an abstract object R have their at- 
tributes dejined in relations which are aggregate components of R. 

We now consider the modeling of various additional aspects of the real world 
related to employees. As our first aspect, assume that the “trade unions” affiliated 
with different employee types must be modeled. The attributes of a trade union 
that are relevant include its name, address, and senior officer. Figure 13 shows the 
object “trade union” in the aggregation plane of “employee’‘-the generalization 
plane is omitted (see Figure 10). 

We are also interested in the “affiliation” of employee types with trade unions. 
We therefore form an abstract object “affiliation” as an aggregation of “employee- 
type” and “trade union.” Let’s assume that an important attribute of an afliliation 
is the person empowered to speak for union members of a particular employee 
type. An appropriate object, say “spokesman,” must therefore be included as an 
additional component of “affiliation.” When this is done, the model appears as in 
Figure 14. With selectors and keys appropriately chosen, a definition of “affiliation” 
is given below : 

var affiliation: 
generic of 
aggregate [TN, UN] 

ACM Transactions on Database Systems. Vol. 2, No. 2, June. 1977. 



Database Abstractions: Aggregation and Generalization 

engineer: 

l 119 

Fig. 11. A relational model for “employee” 

wr employee : 
generic 

TN = (trucker, txoretary, engineer) 
of 
eggegate [E#l 

E#: emp. ID#; 
N: name; 
A: age; 

TN : key employee-type 
end 

var employee-type : 
generic of 
aggregate [TN] 

TN: typename; 
S: size; 
V: vacancies; 

AY: agency 
end 

Fig. 12. Definitions for “employee” and “employee-type” in Figure 11 

TN : key employee-type; 
UN: key traae union; 

S : spokegan 
end 

This definition specifies a relationship over generic objects. 
We next consider some relationships over the generalization plane of “employee” 

ACM Transsctions on Database Syetems, Vol. 2. No. 2. June 1977. 



120 J.M. Smith and D.C.P. Smith 

(Figure 10). Let’s assume that the company where the employees work owns a 
fleet of vehicles (including cars and trucks). We will model the relationship between 
employees and vehicles determined by employee usage of vehicles. In particular 
trucks are used by truckers for hauling materials and cars are used by engineers to 
visit distant sites. No other (official) vehicle use is permitted. The representation 
of “employee” and ‘vehicle” in the generalization plane is shown in Figure 15. 

There are two ways that this relationship between employees and vehicles could 
be modeled. One way is to abstract a single relationship between “employee” and 
“vehicle” as an aggregate object (say, “trip”). Unfortunately this approach is too 
general to fully capture the intended relationship. It would seem that any em- 
ployee could take any vehicle on a trip-including a secretary driving a truck. 
Furthermore, there is no distinction between trips where materials are hauled and 
trips where engineers visit a site. It is very likely that different attributes of a 
trip are important depending on which kind of trip it is. 

The second way of modeling the required relationship between employees and 
vehicles is to decompose it, in the generalization plane, into two relationships- 

emlovee : 

trade 
union: 

Fig. 13. “Trade union” incorporated in the aggregation plane of “employee” 

employee: affiliation: 

I I 

’ ‘xoyee- /n 

Fig. 14. “Affiliation” incorporated in Figure 13 

ACM Transactions on Database Systems, Vol. 2, No. 2, June 1977. 



Database Abstractions: Aggregation and Generalization l 121 

engineer: 

vehicle: 

I I 

Fig. 15. Decomposition of “employee” and “vehicle” in the generalization plane 

visit: 

vehicle: 

u 

Fig. 16. “Haulage” and “visit” incorporated in Figure 15 

one between “trucker” and “truck” and the other between ‘Lengineer” and “car.” 
The first relationship can be abstracted as the aggregate object “haulage” and the 
second as “visit.” These objects are shown in Figure 16. 

The main advantage of this second approach is that the model is a more precise 
representation of reality. This makes the model more understandable and thus 
less prone to erroneous access and manipulation. Furthermore, the model expresses 
real world constraints on “haulage” and “visit’‘-namely that “haulage” must re- 
late truckers to trucks and “visit” must relate engineers to cars. If these constraints 
are enforced during update operations, then certain integrity problems (e.g. 
secretaries who drive trucks) can be avoided. Another advantage is that by re- 
stricting “haulage” and “visit” to explicit subsets of “employee” and “vehicle” 
there is more scope for optimizing retrieval operations at a lower level of imple- 
mentation. 

Let’s consider another example of a relationship over the generalization plane of 
employee. We assume that the assignment of secretaries to engineers must be 
modeled. The most direct way of modeling this relationship is to abstract an object 
by, “assignment”) as an aggregation of “secretary” and ‘Lengineer.” The object 
“assignment” is shown on the right in Figure 17. Although this relationship could 
be modeled as an aggregation of “employee” and “employee,” to do so would create 
unnecessary ambiguity. 

The previous three relationships (haulage, visit, and assignment) all have the 
property that employees of some, but not all, types participate. We now examine a 
relationship in which employees of all types participate, Consider the relationship 

ACM Transsctiona on Database Systems, Vol. 2, No. 2. June 1977. 



122 ’ J.M. Smith and D.C.P. Smith 

assignment: 

job: 

project: 

I 

Fig. 17. “Assignment” and “job” incorporated in Figure 16 

between employees and projects which identifies the jobs employees hold on proj- 
ects. We assume that a given employee may hold jobs on several projects simul- 
taneously but not several jobs on the same project. This relationship is best modeled 
by aggregating “employee” and “project” into an abstract object (say, ‘Ljob”). 
Other attributes of “job” such as “title” and “payrate” may be introduced. The 
object “job” is shown in Figure 1’7. 

A definition of “job,” with appropriate choices for seJectors and key, is given 
below: 

var job: 
generic of 
aggregate lE#, P#l 

E#: key employee; 
P#: key project; 
T: title; 

PR: payrate 
end 

The key “E#, P#” is chosen since, by the constraints given above, jobs are in one- 
to-one correspondence with employee-project pairs. The definition assumes that 
no decomposition of “job” in the generalization plane is of interest. Alternatively, 
suppose some model users are interested in specific types of jobs. Let’s assume 
that among the projects is one to develop modems and another to upgrade printers. 
Some users may want to think of “modern project job” and “printer project job” 
as generic objects. Figure 18 shows how the model appears when these objects are 
incorporated as descendants of “job” in the generalization plane. 

Let’s examine why Figure 18 expresses the appropriate structure. First, since 
we are decomposing job into generic objects (in the generalization plane), a new 
object must be introduced (in the aggregation plane) which is a generalization of 
these objects (thought of as individuals). This follows from the requirement of the 

ACM ‘hnsactions on Database Systems, Vol. 2, No. 2, June 1977. 



Database Abstractions: Aggregation and Generalization 

printer project 
iob: 

0 123 

modem project 

job: 

Fig. 18. Effect of decomposing “job” in the generalization plane 

generic structure that each cluster have its own image domain. This new object is 
called “job-type” and is a component of “job. ” “Job-type” may itself be decom- 
posed into its attribute objects. 

Second, note that each job type is the abstraction of all jobs belonging to a cer- 
tain project. Thus one attribute of a job type is the project to which all its jobs 
belong. Accordingly, in Figure 18 “project” is shown as an .at,tribute of “job- 
Qpe. ” “Project,” is no longer a direct component of “job” as in Figure 17-it is 
now an indirect component via “job-type.” Definitions of “job” and “job-type” 
are given below: 

var job: 
generic 

TN = (modem project job, . . . , printer project job) 
of 
aggregate [E#, TN] 

E#: key employee; 
T: title; 

PR : payrate ; 
TN: key job-type 

end 

var job-type : 
generic of 
aggregate [TN] 

TN : typename; 
P#: key project; 
AP: average payrate 

end 

ACM Transactions on Database Syetems, Vol. 2, No. 2, June 1977. 



124 J.M. Smith and D.C.P. Smith 

Note that “job” is an example of a relation in which the key contains an image 
domain. 

The introduction of “job-type” illustrates a form of restrucluring that may often 
become necessary as the application of a model evolves. In the initial application 
users may be interested in a general class C of objects. As the application evolves, 
certain users may become interested only in the subcategory of C-objects whose 
A attribute is some value vl, while others may become interested in the subcategory 
whose A attribute is v2. These subcategories of C with respect to attribute A must 
then be represented as a cluster in the generalization plane of C. In Figure 18 the 
cluster {modem project job, . . . , printer project job) represents a subcategoriza- 
tion of “job” with respect to “project.” 

In general, if it becomes necessary in an existing model to subcategorize an ob- 
ject 0 with respect to attribute A, the following restructuring is required: (i) De- 
fine a new object S which abstracts the class of subcategories; (ii) replace in 0 
the domain which references A by a domain which references S; (iii) if the key of 
0 contains the selector for A, replace it with the selector for S; and (iv) insert in S 
a domain which references A. 

5. RELATIONAL INVARIANTS 

We first consider the properties of relations that must remain invariant during 
update operations. We then examine each update operation in turn and consider 
methods for ensuring the invariance of these properties. The update operations we 
consider are : 

insert-this operation is performed when a new individual object becomes of 
interest; 

delete-this operation is performed when an existing individual object ceases to 
be of interest; and 

modify-this operation is performed when the details of an existing individual 
object are subject to change. 

In Section 3 we stated the conditions that must be satisfied by the real world 
objects named in a relation definition in order for the definition to express ab- 
stractions. If an object R is being defined in terms of the aggregate components Ri 
and the generic components Rij, these conditions are : 

(i) Each R-individual must determine a unique Ri-individual. 
(ii) No two R-individuals determine the same set of Ri-individuals for all R; 

whose selectors are in “keylist.” 
(iii) Each R;j-individual must also be an R-individual. 
(iv) Each R-individual classified as Rij must also be an Rii-individual. 
(v) No Rij-individual is also an Rik-individual for j # k. 

It is important that the relations and tuples which represent these real world 
objects at some point in time satisfy a corresponding set of conditions. This en- 
sures that the relations faithfully represent the abstract structure of the real world. 
In stating these conditions the following definitions are useful. 

Let t be a tuple in Rii. A parent image of t is a tuple t’ in R for which: (i) t and 

ACM Transactions on Database Systems, Vol. 2, No. 2. June 1977. 



Database Abstractions: Aggregation and Generalization 125 

t’ have the same values in all common domains and (ii) t’.ski has the value “Rij.” 
Semantically speaking, a tuple and its parent image both describe the same real 
world individual; however, the parent image is at a higher level of generalization.4 
If t’ is a parent image oft, we say that t is a child image of t’. 

We can now state the conditions for a relation, together with its aggregate and 
generic components, to represent abstractions : 

(i) For each R-tuple t, if t.si is nonblank, then when Ri is a generic identifier 
t.si is the key of an Ri-tuple, and when Ri is a type identifier t.si is of type Ri. 

(ii) No two distinct R-tuples have the same key. 
(iii) Each Rii-tuple has a parent image in R. 
(iv) For each R-tuple t, if t.ski is nonblank and has the value Rij, then R has a 

child image in Rij. 
(v) No R-tuple has a child image in both Rij and R;k for j # k. 

We call these five conditions relational invariants. They are a transformation of 
the prior five conditions in accordance with the method of representing generic 
objects as relations. There is one minor exception embodied in the first and fourth 
invariants. In practice it is necessary to permit the occurrences of blanks (which 
mean “unknown” or “don’t care”) in some domains. The first and fourth invariants 
make allowance for this possibility. 

The relational invariants can be thought of as constraining a relation to repre- 
sent an “abstract object.” These invariants must be satisfied by every relation in 
a relational model irrespective of the kind of abstract object the relation repre- 
sents. In addition each relation must usually satisfy a set of invariants (often 
called “integrity constraints”) which are peculiar to that relation alone. These 
invariants constrain a relation to the representation of a particular kind of abstract 
object. Since the relational invariants apply to every relation, they are the most 
fundamental form of integrity constraint. 

Users do not normally interact with a database at the level of primitive update 
operations such as insert, delete, and modify. In most cases these primitives are 
used to construct higher level update operations called transactions. The notion of 
a transaction allows the difference between the relational invariants and special 
integrity constraints to be characterized in another way. The relational invariants 
must be satisfied before and after each user initiated update operation. However, 
special integrity constraints need only be satisfied before and after each transaction. 

We now discuss the maintenance of the relational invariants during update 
operations. Throughout this discussion we assume an idealized situation in which 
(i) the model correctly abstracts the real world structure at the time of update, 
(ii) all update information accurately reflects the attributes of real world indi- 
viduals, and (iii) all users have full access rights to all relations. This idealized 
situation allows us to ignore the separate issues of special integrity constraints and 

4 A tuple may have several parent images, though each must be in a different relation (for 
example, consider the hierarchy of Figure 2). 
b These invariants may be used as axioms to specify (in the manner of Hoare 121) the semantics 
of the generic structure. Other axioms are required in addition to the five invariants. 

ACM Transactions on Database Systems, Vol. 2, No. 2, June 1977. 



i26 l J.M. Smith and D.C.P. Smith 

paR: 

I 

I 
cgR: 

image domain 
for cqR ,F I--- 

L 
GQced::: 

for caR 

reference 
caR: I 

Fig. 19. A relation R and its paR, caR, pgR, and cgR relations 

access control. We contend that these issues are best attacked after methods have 
been developed to maintain the relational invariants. 

The following abbreviations will be useful in the subsequent discussion. Consider 
a relational model M which contains, among others, a relation R. Relative to R, 
we say that a relation is: 

paR if it is a parent in the aggregation plane of R; 
caR if it is a child in the aggregation plane of R; 
pgR if it, is a parent in the generalization plane of R; 
cgR if it is a child in the generalization plane of R. 

Figure 19 illustrates how a relation R is “connected” to its paR, caR, pgR, arkd 
cgR relations. 

In .Table III we summarize methods for maintaining the relational invariants 
during update operations. Each type of update operation (insert, delete, modify) 
is considered in a separate table. Each table records the effect on the five invariants 
of performing an update operation on a tuple t with key k in a relation R. 

It, is assumed that the relational invariants are satisfied prior to the update opera- 
tion. Each table shows how the invariants could be violated as a result of the 
update operation and also what action can be taken to correct each violation. The 
action is always to perform an update operation on one or more paR, caR, pgR, 
or cgR relations. These actions may in turn cause further violations and thus up- 
date operations on other relations. In this way a single user initiated update opera- 
tion can trigger additional update operations which propagate along both aggrega- 
tion and generalization planes. 

We first explain some entriks in the tables of Table III and then examine some 
important properties of triggered operations. As is usual in relational models, we 
assume that no tuple is ever allowed to have a blank in a key domain. This should 
be the only reason for disallowing a “correct” update operation. 

The only time that invariant, (ii) can be violated by a correct update is when a 

ACM Transactiona on Database Syatems,Vol. 2,No. 2,June1977. 



Database Abstractions: Aggregation and Generalization l 127 

duplicate tuple is inserted. In this case the corrective action is simply to delete one 
duplicate. Invariant (v) can never be violated given our correctness assumptions. 
Invariants (i), (iii), and (iv) can be violated by any correct update. In each case 
the corrective action is in accordance with the abstract structure of relational 
models. Let’s consider a few examples. 

Table III. Maintenance of the relational invariants during update operations. Part 1 
(Part 2 appears on next page.) 

INSERT 

Invar- Possible violation after Method for correcting violation 
iant insertion 

i) t references a non- insert a tuple in R' with the appro- 
existent tuple in some priate key values and blanks else- 
caR relation R' where 

ii) t.occurs twice in R delete either occurrence of t 

iii) t does not have a parent if a tuple with key k already occurs 
image in some pgR rel- in R' then mOd<fy this tuple so that 
ation R' it bet= the parent image of t 

otherwise insert a parent image in 
R' (use blanks where values are 
unknown) 

iv) t does not have a re- insert a child image in R' (use blanks 
quired child image in where values are unknown) 
some cgR relation R' 

none 

DELETE 

Invar- 
iant 

i) 

ii) 

iii) 

iv) 

v) 

Possible violation after Method(s) for correcting violation 
deletion 

a tuple in some paR re- a) modify the tuple so that the refer- 
lation references a ence is replaced by a blank (only 
non-existent R-tuple possible if reference is not part of 

tuple's key) 
b) deZete the tuple 

a tuple in some cgR re- delete the tuple 
lation has no parent 
image in R 

a tuple in some pgR re- a) modify the tuple by replacing its 
lation does not have image domain value by a blank (only 
a required child possible if image domain is not part 
image in R of tuple's key) 

b) delete the tuple 

I I 

ACM Tmmctiom on Database Syatems,Vol. 2, No.Z,June 1977. 



128 l J.M. Smith and D.C.P. Smith 

Table III. Part 2 
(Part 1 appears on previous page.) 

MODIFY 

[mar- 
iant 

i) 

ii) 

iii) 

iv) 

Possible violation after 
I 

Method for correcting violation 
insertion I 

t references a non-existent insert a tuple in R' with the 
tuple in some caR relation appropriate key values and blanks 
R' elsewhere 

(key domain modification) 
a tuple in some paR rela- 
tion references a non- 
existent R-tuple 

modify the tuple so that it 
references t 

*one 

t does not have a parent modify t's old parent image so 
image in some pgR relation that it becomes t's (new) parent 
R' image 

a tuple in scme cgR rela- if image domain for R' is modified 
tion R' has no parent image 'then delete the tuple otherwise 
in R afy the tuple so that t becomes 

its parent image 

t does not have a required 
child image in some cgR 
relation R' 

if image domain for R' is modified 
then insert a child image in R' 
(use blanks where values are 
unknown) otherwise modify t's 
old child image in R' so that 
it becomes t's (new) child image. 

a tuple in some pgR rela- 
tion does not have a 
required child image in R 

modify the tuple so that t becomes 
its child image 

Suppose we violate invariant (i) by inserting a tuple t. This means that t must 
reference a nonexistent tuple in some relation R’. To correct this violation we must 
insert an appropriate tuple (say t’) in R’. Lacking other input information, the 
only detail we know about t’ is its key (which appears in t). Blanks must therefore 
be inserted in the nonkey domains of t’. Semantically, the effect of this corrective 
action is to introduce the abstract object t’ which is known to participate in the 
relationship t. 

Suppose we violate invariant (iii) by deleting a tuple t. This means that the 
tuple (say t’), which was the child image of t, no longer has a parent image in R. 
To correct this violation we must delete the tuple t’. This corrective action reflects 
the semantic requirement that an object which does not appear in a class at a high 
level of generalization cannot appear in a class at a lower level of generalization. 

Suppose we violate invariant (iv) by modifying a tuple t. There are two ways in 
which such a violation can occur. The first way is when t, after modification, has a 

ACM Transactionson Databaw Systema,Vol. 2. No. 2,June 1977. 



Database Abstractions: Aggregation and Generalization l 129 

value (say R’) in some image domain (say d) and yet t has no child image in R’. 
In this case the corrective action depends on whether or not d was changed by the 
modify operation. If d was not changed then t’s old child image in R’ must be modi- 
fied to make it t’s new child image--all the information required already occurs 
in t. If d was changed then a child image must be inserted into R’. The key of this 
child image is contained in t-however, blanks will have to be inserted in any do- 
main whose value is not contained in t. 

The second way in which a violation can occur is when t’s old parent image (say 
t’) no longer has a child image in R. In this case the corrective action is to modify 
t’ so that it becomes once again the parent image of t. In all cases the corrective 
action reflects the semantic requirement that the details of an abstract object must 
be consistent no matter what the level of generalization of the class in which it 
appears, 

Examination of Table III will reveal that there are two methods for correcting 
violations of invariants (i) and (iv) following a delete operation. Each of these 
methods is semantically appropriate for certain situations. Let’s consider invariant 
(i) first. Suppose we have an abstract object x which has an object y as an ag- 
gregate component. The question is whether x should be deleted if y is deleted. 
The answer seems to depend on the context. 

For example, suppose a certain car has a “radio” and a “unibody” as two of its 
aggregate components. If the radio is destroyed, the car is normally considered to 
remain in existence. However, if the “unibody” is destroyed, then the car is nor- 
mally considered to have also been destroyed. Since such questions about deletion 
can only be answered within a higher semantic framework, it is necessary to leave 
open the decision of how invariant (i) is maintained. When transactions are de- 
signed, the programmer can select which option is most appropriate relative to the 
integrity constraints he wants to maintain. 

Similar considerations apply to invariant (iv). Suppose we have a general class 
x of objects which includes all objects from a more special class y. The question is 
whether an object should be deleted from x if it is deleted from y. For example, 
suppose that an object ceases to be a “Ford car.” Since it is not very meaningful 
to change the manufacturer of a car, the presumption is that the object has ceased 
to be a “car” of any sort. On the other hand, suppose that an object ceases to be a 
“red car.” Since it is very easy to repaint a red car in the color blue, the presump- 
tion might be that the object still remains a “car.‘, The decision as to how invariant 
(iv) should be maintained under deletion operations must therefore be left to a 
higher level of modeling. 

From the previous discussion, it should be clear that the maintenance procedures 
in Table III are designed to reflect the abstract structure of the real world. In 
principle, therefore, no matter what relational model is involved, triggered se- 
quences of update operations should reflect “natural” side effects of an original 
user defined update. However, if we disregard our real world interpretation and 
consider the question formally, it is not at all easy to verify that sequences of 
triggered updates will necessarily be well behaved, 

Conceptually, triggered updates are propagated simultaneously along many 
paths. What happens when two paths cross? Can one triggered update undo the 
work of another? Is the net result of a user defined update independent of the 

ACM Trsnaactions on Database Systems, Vol. 2, No. 2, June 1977. 



130 l J.M. Smith and D.C.P. Smith 

order in which triggered updates are scheduled? Can a sequence of triggered up- 
dates become cyclic? If a triggered update cannot be accepted (because invariant 
(ii) or (v) would be violated), then the sequence of triggered updates must be 
backed up and the original update disallowed. How do we know that no “correct” 
user defined update will be disallowed for this reason? 

We would require that any invariant maintenance procedure satisfy at least the 
following three properties : 

(i) The propagation of triggered updates must eventually terminate. 
(ii) The overall effect, after propagation terminates, is independent of the 

order in which triggered updates are scheduled. 
(iii) A “correct” user defined update is only disallowed when it requires a blank 

to be inserted in a key domain. 

We call these properties termination, determinany, and compliancy. We conjecture 
that the invariant maintenance procedure of Table III satisfies all three properties. 

6. CONCLUDING REMARKS 

In this section we discuss several aspects of the generic structure, including data- 
base design methods, implementation techniques, and query languages. We will 
begin with database design methods-the discussion will first concentrate on 
“normal forms” and then move on to consider design methodology. 

In Section 3 we said that a relation is well defined if it satisfies the five relational 
invariants. Codd [l] and others have proposed several normal forms which are 
also supposed to capture some notion of a ‘Lgood” relation. What is the relationship 
between a well-defined relation and a normal-form relation? 

Essentially, normal forms are an attempt to formalize the notion of “basic 
aggregate object” in terms of the concept of functional dependency. These normal 
forms are not intended to, and do not, address properties of generalization. 
Given an aggregate object, these normal forms are useful in deciding whether the 
object is basic (i.e. that the object has no other object embedded within it). How- 
ever, normal forms are not, at present, able to distinguish what is, or is not, an 
aggregate object. 

Intuitively an aggregate object is something that we can name with a noun 
(or noun phrase) and presumably think of as a whole. By requiring relations to 
be named, the aggregate structure captures thii aspect of an aggregate object. 
Normal forms do not explicitly consider naming and as a result normal-form re- 
lations may be effectively unnameable (except by a sentential description). For 
example, the relation R in Figure 20 satisfies (we believe) all published normal 
forms. However, the relation does not represent an aggregate object because it has, 
apparently, no name which satisfies the semantic requirements for being well 
defined. 

R(man, property value, woman, property value) 

Tuple (CC, y, z, w) is in R ifs x owns a piece of property worth y, z owns a piece of property 
worth 20, and y > w. 

(Assume that both men and women can own several pieces of property.) 

Fig. 20. A normal-form relation which is effectively unnameable 

ACM Tramactions on Database Systems. Vol. 2. No. 2, June 1977. 



Database Abstractions: Aggregation and Generalization l 131 

On the other hand, while the aggregate structure is a stronger attempt at cap- 
turing the notion of “aggregate object,” it does not capture the notion of “basic.” 
We suggest, therefore, that “well-defined relation” and “normal-form relation” 
are complementary criteria for use in database design. Once well-defined relations 
have been discovered, their internal dependency structure may be checked against 
normal-form criteria. If a well-defined relation is not in normal form, it may (or 
may not) be appropriate to further decompose the relation. 

In [4] we suggested a methodology for database design which leads to aggregate 
objects and then to well-defined relations. However, this methodology did not 
consider decomposition in the generalization plane (i.e. single-level generic hier- 
archies were implicitly assumed). The methodology can be extended in the obvious 
way to consider decomposition in both planes. There may be a marginal advantage 
to decomposing in the generalization plane before decomposing in the aggregation 
plane. This is because each cluster introduced in the generalization plane requires 
a new object to be inserted in the aggregation plane. 

We now comment on techniques for implementing relational models at lower 
levels. In such an implementation there are two factors to consider: (i) how the 
relational structure is represented, and (ii) how the relational invariants are main- 
tained. One consideration in choosing the structure representation is to save storage 
space by eliminating redundant information. Such information occurs in both 
the aggregation and generalization planes. In the aggregation plane it occurs as 
a result of key values being repeated up the hierarchy. In the generalization plane 
it occurs when attribute values (key or nonkey) are repeated up the hierarchy. 
One effect of the relational invariants is to ensure that all redundant information 
is consistent. Therefore, by removing as much redundancy as possible, the rela- 
tional invariants should be maintainable in the most efficient manner. 

Preliminary investigation indicates that relational models can be represented in 
terms of DBTG (Database Task Group) “owner-coupled set” structures so that 
no redundancy occurs. For the aggregation plane, each hierarchic branch becomes 
a different set type with the upper relation as member type and the lower relation 
as owner type. Each set instance contains as members all tuples which reference 
the owner tuple. For the generalization plane, each collection of all hierarchic 
branches from a given relation becomes a different set type with the upper relation 
as owner type and all descendant relations as member types. Each set instance 
contains as members all child images of the owner tuple. It seems likely that most 
of the relational invariants can be maintained using DBTG Data Definition Lan- 
guage-options-however, this issue is not yet fully resolved. 

Finally, we discuss some issues associated with access languages for relational 
models. When we began our study of generalization and its representation in rela- 
tional models, we had assumed that a higher order query language would be es- 
sential to exploit the rich hierarchic structure. It seemed that higher order variables 
would be needed to range over higher order relations (i.e. relations of relations, etc.) 
in addition to first order variables which range over first order relations (i.e. rela- 
tions of individuals). 

However, we had underestimated the power of abstraction. Our motivation 
for the generic structure was to provide uniform treatment for all kinds of objects- 
individual, aggregate, and generic. This means that higher order relations are 

ACM Tmnaactions on Dstsbase Systems, Vol. 2. No. 2, June 1917. 



132 l J.M. Smith and D.C.P. Smith 

structurally identical to first order relations. As a result a first order query language 
appears to be adequate for all relational models no matter how many levels of 
generalization they contain. In essence, by imposing an appropriate structuring 
discipline, we have been able to exploit a richness that was already implicit in 
Codd’s original work. 

Despite the fact that a first order language may be adequate for querying, there 
are strong reasons for developing higher order primitives for applications pro- 
gramming. Consider the following query over the relational model of Figure 11: 

“Find out what type of employee E5 is, and then retrieve his record for 
that employee type.” 

This query can be conveniently expressed in two parts as shown below. 

Part 1: 
R +- RESTRICT (employee to E# = E5); 
S +- PROJECT (R 011 TN); 
RETRIEVE S; 

Part 2 (assuming response to Part 1 is “trucker”): 
T +- RESTRICT (trucker to E# = E5); 
RETRIEVE T; 

Tho first part returns E5’s employee type (say “trucker”), and the second part 
retrieves E5’s record from “trucker.” In this case the user has to formulate the 
second part from information obtained in the first part. 

If this query were to be implemented as an application program, the user would 
be “replaced” by a case statement as shown below. 

READ X; 
R + RESTRICT (employee to E# = X); 
S +- PROJECT (R on TN); 
T + case S of 

trucker: RESTRICT (trucker to E# = X); 
secretary: RESTRICT (secretary to E# = X); 
engineer: RESTRICT (engineer to E# = X) 

end 

RETRIEVE T; 

The problem with using the case statement is that the program becomes dependent 
on the generic components of ‘Lemployee” at one point in time. If a new type of 
employee is hired (say “guard”) then the program will not work when the input 
happens to be the employee number of a guard. 

This “time dependency” can be removed with the aid of a higher order operator 
which we will call SPECIFY. Given the name of a relation, SPECIFY will return 
the relation so named. We can now rewrite the preceding program as shown below. 

READ X; 
R +- RESTRICT (employee to E# = X); 
S +- PROJECT (R on TN); * 
T + SPECIFY S; 
U +- RESTRICT (T to E# = X); 
RETRIEVE U; 

The new program is independent of the generic components of “employee” at all 
points in time. 
ACM Transactions on Database Systems. Vol. 2. No. 2, June 1977. 



Database Abstractions: Aggregation and Generalization l 133 

The introduction of higher order primitives can thus increase the stability of 
programs as the database evolves in accordance with the real world. It ‘is not clear 
what other higher order operators are useful besides SPECIFY. As far as we know, 
these aspects of applications programming have yet to be investigated. 

ACKNOWLEDGMENTS 

We are grateful for the comments of R.W. Taylor and the anonymous referees on 
an earlier version of this paper. 

REFERENCES 

1. CODD, E.F. Further normalization of the data base relational model. In Couront Computer 
Science Symposium 6: Data Base Systems, Prentice-Hall, Englewood Cliffs, NJ., May 1971, 
pp.. 33-64. 

2. HOARE, C.A.R. Notes on data structuring. In APIC Studies in Data Processing No. 8: 
Structured Programming, Academic Press, New York, 1972, pp. 83-174. 

3. QUILLIAN, M.R. Semantic memory. In Semantic Information Processing, M.I.T. Press, 
Cambridge, Mass., 1968, pp. 227-268. 

4. SMITH, J.M., AND SMITH, D.C.P. Database abstractions: Aggregation. To appear in Comm. 
ACM in June 1977. 

Received November 1976; revised February 1977 

ACM Transactions on Database Syetems. Vol. 2, No. 2, June 1977. 


